JAMA | Special Communication | AI IN MEDICINE

AI, Health, and Health Care Today and Tomorrow The JAMA Summit Report on Artificial Intelligence

Derek C. Angus, MD, MPH; Rohan Khera, MD, MS; Tracy Lieu, MD, MPH; Vincent Liu, MD, MSc; Faraz S. Ahmad, MD, MS; Brian Anderson, MD; Sivasubramanium V. Bhavani, MD, MS; Andrew Bindman, MD; Troyen Brennan, MD, MPH; Leo Anthony Celi, MD, MPH, MSc; Frederick Chen, MD, MPH; I. Glenn Cohen, JD; Alastair Denniston, MA, PhD; Sanjay Desai, MD; Peter Embí, MD, MS; Aldo Faisal, PhD; Kadija Ferryman, PhD; Jackie Gerhart, MD; Marielle Gross, MD, MBE; Tina Hernandez-Boussard, PhD, MS, MPH; Michael Howell, MD, MPH; Kevin Johnson, MD, MS; Kristine Lee, MD; Xiaoxuan Liu, MBChB, PhD; Kimberly Lomis, MD; Alex John London, PhD; Christopher A. Longhurst, MD, MS; Ken Mandl, MD, MPH; Elizabeth McGlynn, PhD; Michelle M. Mello, MPhil, PhD, JD; Fatima Munoz, MD, MPH; Lucila Ohno-Machado, MD, PhD, MBA; David Ouyang, MD; Roy Perlis, MD, MSc; Adam Phillips, MD; David Rhew, MD; Joseph S. Ross, MD, MHS; Suchi Saria, PhD; Lee Schwamm, MD; Christopher W. Seymour, MD, PhD; Nigam H. Shah, MBBS, PhD; Rashmee Shah, MD, MS; Karandeep Singh, MD, MMSc; Matthew Solomon, MD, PhD; Kathryn Spates, JD, ACNP-BC; Kayte Spector-Bagdady, JD, MBE; Tommy Wang, PhD; Judy Wawira Gichoya, MD, MS; James Weinstein, MS, DO; Jenna Wiens, PhD; Kirsten Bibbins-Domingo, PhD, MD, MAS; for the JAMA Summit on Al

IMPORTANCE Artificial intelligence (AI) is changing health and health care on an unprecedented scale. Though the potential benefits are massive, so are the risks. The JAMA Summit on AI discussed how health and health care AI should be developed, evaluated, regulated, disseminated, and monitored.

OBSERVATIONS Health and health care AI is wide-ranging, including clinical tools (eg, sepsis alerts or diabetic retinopathy screening software), technologies used by individuals with health concerns (eg, mobile health apps), tools used by health care systems to improve business operations (eg, revenue cycle management or scheduling), and hybrid tools supporting both business operations (eg, documentation and billing) and clinical activities (eg, suggesting diagnoses or treatment plans). Many Al tools are already widely adopted, especially for medical imaging, mobile health, health care business operations, and hybrid functions like scribing outpatient visits. All these tools can have important health effects (good or bad), but these effects are often not quantified because evaluations are extremely challenging or not required, in part because many are outside the US Food and Drug Administration's regulatory oversight. A major challenge in evaluation is that a tool's effects are highly dependent on the human-computer interface, user training, and setting in which the tool is used. Numerous efforts lay out standards for the responsible use of AI, but most focus on monitoring for safety (eg, detection of model hallucinations) or institutional compliance with various process measures, and do not address effectiveness (ie, demonstration of improved outcomes). Ensuring AI is deployed equitably and in a manner that improves health outcomes or, if improving efficiency of health care delivery, does so safely, requires progress in 4 areas. First, multistakeholder engagement throughout the total product life cycle is needed. This effort would include greater partnership of end users with developers in initial tool creation and greater partnership of developers, regulators, and health care systems in the evaluation of tools as they are deployed. Second, measurement tools for evaluation and monitoring should be developed and disseminated. Beyond proposed monitoring and certification initiatives, this will require new methods and expertise to allow health care systems to conduct or participate in rapid, efficient, and robust evaluations of effectiveness. The third priority is creation of a nationally representative data infrastructure and learning environment to support the generation of generalizable knowledge about health effects of AI tools across different settings. Fourth, an incentive structure should be promoted, using market forces and policy levers, to drive these changes.

CONCLUSIONS AND RELEVANCE Al will disrupt every part of health and health care delivery in the coming years. Given the many long-standing problems in health care, this disruption represents an incredible opportunity. However, the odds that this disruption will improve health for all will depend heavily on the creation of an ecosystem capable of rapid, efficient, robust, and generalizable knowledge about the consequences of these tools on health.

JAMA. doi:10.1001/jama.2025.18490 Published online October 13, 2025.

- Editor's Note
- Multimedia
- Supplemental content
- **CME** at jamacmelookup.com

Author Affiliations: Author affiliations are listed at the end of this article.

Group Information: The JAMA Summit on Al participants appear in the Supplement.

Corresponding Author: Derek C. Angus, MD, MPH, Critical Care Medicine, UPMC, 3550 Terrace St, 614 Scaife Hall, Pittsburgh, PA 15261 (angusdc@upmc.edu). he scope, scale, and speed with which artificial intelligence (AI) will transform health and health care are staggering. 1-4 AI is changing how and when individuals seek care and how clinicians interact with patients, establish diagnoses, and implement and monitor treatments. Indeed, there is considerable enthusiasm that AI, especially given recent advances (Box), could address long-standing challenges in the access, cost, and quality of health care delivery. 1-4 Yet, the optimal path for AI development and dissemination remains unclear. In contrast to drugs or more traditional medical devices, there is little consensus or structure to ensure robust, safe, transparent, and standardized evaluation, regulation, implementation, and monitoring of new AI tools and technologies. 3-5-7 Some challenges are long-standing for digital health information technology as a whole, albeit more prescient with the rise of AI, while others are specific to AI.

To ensure that innovation in AI is both encouraged and appropriately incorporated into health care delivery, alignment on how to address these challenges among AI developers, health care systems and professionals, payers, regulators, and patients is required.^{4,5,7} A JAMA Summit convened multiple stakeholders to review the current state of AI in health and health care, focusing on how best to evaluate, regulate, and monitor AI tools and technologies and the implications for health care infrastructure and workforce. Al can influence health and health care in many ways (Box), but we limited discussion to tools and technologies used by clinicians, patients, and individuals with health or wellness concerns, and health care systems (Table 1). Although AI is a broad term that can include older technologies similar to those of traditional statistical and computer-based decision support applications, discussion was limited to more recent advances such as machine learning models using ensemble methods, deep learning, generative AI, and agentic AI (Box).8 We used the term AI tool to represent any tool, technology, device, or application containing such AI.

AI Tools in Health and Health Care

Clinical Tools

Most AI tools in the medical literature fall under the category of clinical tools (ie, tools directly supporting the clinical activities of health care professionals). Examples include AI software for automated screening of diabetic retinopathy, AI software embedded in a portable echocardiography device to provide automated diagnosis, or a machine learning algorithm that scans the electronic health record (EHR) to provide sepsis alerts and treatment recommendations. 9-19 Many of these tools require US Food and Drug Administration (FDA) clearance as medical devices, and more than 1200 have been cleared, the majority of which are in medical imaging. ^{7,20} AI has transformed medical imaging, augmenting image interpretation and dramatically changing how radiologists and pathologists work, with adoption of some type of AI by 90% of US health care systems. 1,21-23 AIbased clinical decision support tools embedded in the EHR are also widely available, in part because some have been outside the FDA's oversight and because the cost to a health care system to have the tool turned on may be perceived as modest.²³ Despite good access to these native EHRAI tools, concern among clinicians and health care systems persists regarding their accuracy, value, and utility. 23,24

Box. The Broad Nature and Use of Artificial Intelligence (AI)

Al is a broad term; for decades, Al consisted of rule-based representations of knowledge (software encoding logic statements like "if X, then Y") and prediction models (artificial neural networks), offering output similar to that of traditional computer software and statistical models. However, with advances in computing power and the availability of larger, more complex datasets over the last 2 decades, Al evolved rapidly. The following 3 advances help differentiate Al from prior digital technologies:

- Deep learning: development of deeper, more convoluted neural networks capable of interpreting large complex datasets to address specific yet complicated tasks (eg, computer vision).
- Generative AI: an extension of deep learning using so-called large language and foundation models capable of generating new content to address far broader task requests (eg, ChatGPT or Gemini).
- Agentic AI: an extension of deep learning and generative AI capable of autonomous decision-making (eg, the Tesla autopilot software for autonomous driving).

This article focuses on newer AI tools used by clinicians, health care systems, and individuals with health concerns. Newer AI technology used broadly across society can also influence health. Examples include:

- Al tools deployed in the life sciences (eg, tools to enhance drug discovery, improve the conduct of randomized trials, or interrogate health care data) could improve biomedical discovery.
- Al tools deployed to address social factors (eg, tools to improve housing affordability or food security) could alter downstream health.
- Al tools used broadly in social communication and interaction (eg, algorithms deployed in social media platforms) could affect mental health, spread information (or disinformation) about health and health care, and influence aspects of care-seeking behavior, such as attitudes about vaccination.
- Use of general efficiency hacks by biomedical scientists and health care professionals, such as using ChatGPT for biomedical report writing or Gemini for internet searches, could impact how medical information is summarized, distributed, and used.

Outside medical imaging and EHR-embedded applications, dissemination of clinical AI tools has been slower. The primary barrier is likely that the health care systems responsible for buying these tools do not believe they offer enough value. The costs of not just licensing a tool but also of ensuring adequate training, digital infrastructure, maintenance, and monitoring can be considerable. ^{23,25,26} There is no reimbursement for most AI tool use and, even in select cases when insurers provide reimbursement, it does not offset the full costs. ²⁷ There can also be skepticism regarding whether the purported benefits will be realized in practice. Concerns about algorithmic bias, automation bias (favoring suggestions from automated systems while overlooking contradictory information), lack of generalizability, and insufficient trust and endorsement from clinicians and patients may further dampen health care systems' enthusiasm. ^{23,24,28-32}

Direct-to-Consumer (DTC) Tools

There is considerable enthusiasm among the public for DTC AI tools (ie, tools used by patients or individuals with health or wellness

JAMA Published online October 13, 2025

E2

Table 1. Categories of Artificial Intelligence (AI) Tools that Directly Influence Health and Health Care Delivery

	Clinical	Direct to consumer	Business operations	Hybrid
Description	Al tools used by a clinician to support diagnostic or treatment decisions	Al tools used by a person with health or wellness concerns, without necessarily engaging with any health care system or professional	Al tools used by a health care system or professional to optimize aspects of health care delivery	Al tools that serve multiple purposes (eg, clinical and business operations)
Opportunity	Improve patient outcomes via:	Improve patient and population health via:	Improve health care delivery via:	Improve health care delivery via:
	Better access to care, diagnostic accuracy, and compliance with best practice guidelines More personalized care	Improved disease surveillance and management	Automating labor-intensive processes	Reduced administrative burden on health care professionals
		Helping individuals adopt healthy lifestyles and	Reduced administrative burden Reduced waste Improved revenue generation	Helping health care professionals execute care tasks
		more prompt, more personalized, and/or less costly access to care		Helping patients navigate health care delivery options
Examples	Al software for autonomous screening of diabetic retinopathy Embedded software in portable cardiac ultrasonography machine that provides automated diagnosis EHR-based algorithm that generates sepsis alerts with treatment prompts	Smartphone app that diagnoses and treats skin conditions Chatbot that offers mental health support Algorithm that uses biosensor data from smartwatch to detect falls or arrhythmias	Algorithm that uses EHR data to optimize coding for billing Software to optimize supply chain management Software to optimize patient and staff scheduling	Ambient AI that transcribes patient-clinician conversations to generate notes, bills, and treatment plans Large language model that replies to patient secure messages Web-based patient navigator that helps schedule appointments based on patient concerns
Current trends	Many published evaluations Considerable efforts to provide regulatory oversight High adoption in medical imaging High availability but variable adoption of embedded EHR tools Low adoption outside imaging and EHR with concerns about trust, effectiveness, safety, and implementation costs	Large number of apps and downloads Scant data on health effects, with some concerns about safety and effectiveness Very limited regulatory oversight, especially regarding health effects Optimal business model unclear Little integration across products or with health care delivery	Rapidly growing market, with wide adoption by health care systems Very limited evaluation of effects on health Limited regulatory oversight Concerns expressed by clinicians about untoward effects on patients	Rapidly growing market, with wide interest and adoption by health care systems Very limited evaluation of effects on health Limited regulatory oversight Concerns expressed by clinicians about untoward effects on patients

Abbreviation: EHR, electronic health record.

concerns). 33-35 Examples include an app that accesses a smartphone camera to help an individual self-diagnose a dermatologic condition, a chatbot offering mental health support, and an algorithm using biosensor data from a smartwatch to detect falls or arrhythmias. 36-39 There are currently more than 350 000 mobile health apps, with Al frequently embedded in the software. 35,40 Three of 10 adults worldwide have used a mobile health app, and the market is already more than \$70 billion annually.³⁵ Although some products, such as those monitoring for arrhythmias, are regulated by the FDA, companies can often label DTC tools as low-risk general wellness products, and may avoid regulatory or reporting requirements. 33,41,42 Most of these tools do not connect with the health care delivery enterprise, limiting health care professionals' ability to access data and review or coordinate recommendations. Tools that do interact with health care professionals require considerable upfront investment to ensure data are integrated appropriately. Some health insurers have encouraged use of DTC wellness apps via subscription coverage or reward incentives, but most usage is not reimbursed. 43-45 Other barriers include the lack of high-quality evidence regarding

health benefits; concerns about trust, usability, and privacy; integration (or not) with health care systems; and uncertainty regarding the right business model. 46,47 Nevertheless, as these barriers are overcome or circumvented, these tools, because they bypass much of the existing infrastructure of traditional health care, may represent truly disruptive innovation. 48

Health Care Business Operations Tools

Health care systems are rapidly purchasing AI tools to boost system efficiencies and operating margins. ^{2,49,50} Examples include AI software to optimize bed capacity, revenue cycle management, patient and staff scheduling, supply chain, and reporting requirements. ^{2,49-57} One popular example is use of AI by health care systems to generate prior authorization requests and, perhaps not surprisingly, insurers are similarly adopting AI tools to evaluate those requests. ⁵⁸⁻⁶⁰ Use of AI to improve business operations is already ingrained in many industries. ⁶¹ However, the consequences for patients when health care delivery organizations adopt these tools are not well understood. For example, if a health care system implements

jama.com JAMA Published online October 13, 2025 E3

Al software to optimize operating room scheduling, there could be large effects (good or bad) on staffing costs and on access to time-sensitive surgical interventions. Although changes in access may affect hospital quality reports, attributing these changes to the tool may be missed because use of the tool, similar to other health care operational strategies, does not require any evaluation or regulatory review.

Hvbrid Tools

Many AI tools support both business operations and some aspect of clinical care or patient experience. For example, so-called *AI scribes* that listen to patient-clinician conversations help operations by generating notes and bills (reducing documentation burden) while also providing clinical support, such as offering possible diagnoses or treatment recommendations for verification. Similarly, a webbased AI patient navigator tool may bring more patients into a health care system while providing better direction to the right health care professionals, generating system revenue and improving patient access. These tools are being adopted very rapidly by health care systems. Patients are being adopted very rapidly by health care systems. Al scribes in particular, although initially associated with mixed results, appear well received by patients and clinicians, especially when integrated with the EHR. Patients and clinician conversation in the US may soon be accompanied by a live interactive AI agent.

Challenges for the Evaluation of AI Tools

In theory, given the importance of AI tools' potential effects on patients' health outcomes (as well as on health care costs and

workforce), methodologically rigorous evaluations should be undertaken to generate a solid evidence base to inform their dissemination (ie, production of generalizable knowledge about the conditions under which particular effects are realized). ^{66,67} In practice, despite wide acceptance that AI tools can have large effects on health, there is considerable debate regarding which tools require evaluation, how evaluations should be conducted, and who is responsible.

Which AI Tools Require Evaluation of Their Health Effects?

The evaluation of clinical AI tools in peer-reviewed publications seems broadly supported. Evaluation is required for many FDA clearances, such as the de novo software as a medical device pathway, and examples of untoward consequences when AI tools were disseminated without prior peer-reviewed evaluations, such as high missed case and false alarm rates by a sepsis alert system, sparked calls for mandatory evaluations before broad use. ^{68,69} There are multiple evaluations of DTC tools and, although some showed benefit, others raised safety concerns, such as advice that was harmful or contrary to guidelines and a lack of adequate support during mental health crises, prompting demands that these tools should also be routinely evaluated. ^{34,70} However, the DTC tools evaluated to date are a tiny fraction of the market, and negative findings do not appear to have hindered market growth.

There are strong opinions, but few peer-reviewed evaluations, regarding the health effects of business operations tools. For example, many US physicians believe that insurers' use of AI tools to deny prior authorization is having widespread negative consequences for patients, but no studies have examined whether and how using AI tools has affected denial rates. 60,71,72 Not surprisingly, insurers defend their use of such tools.⁷³ Although peer-reviewed evaluations of business operations tools are rare, customer testimonials and use cases, often with blended claims about both system efficiencies and health care quality, are routinely used to market these products. 74,75 The business operations tools for which published evaluations are available are those with hybrid function like AI scribes, though evaluation largely focuses on patient and clinician satisfaction and on clinician workflow rather than on the effects on health care quality and patient outcomes. 62-65

Many stakeholders believe that all of these AI tools affect health, but the impetus for peer-reviewed evaluation of potential health consequences, and likelihood that their findings will affect adoption, appears strongest for those tools most proximate to clinicians. The lack of evaluation of the health effects of business operations tools is not unique to AI, but rather is consistent with that for all health care organizational strategies, despite calls for change. ⁷⁶⁻⁷⁸

How Should Evaluations Be Conducted?

There are considerable methodologic challenges to the generation of transferable knowledge about the health consequences of health and health care AI tools, especially how to define the intervention and context, identify the mechanism of action, capture relevant outcomes, and infer causality.

Defining the Intervention and Context

To be generalizable, any evaluation must describe what the actual intervention is and in what context it is assessed. With an Al tool,

E4 JAMA Published online October 13, 2025

the intervention is both the AI software and its delivery package: the human-computer interface and accompanying training. A poor human-computer interface or lack of training could considerably diminish the tool's effectiveness. The context includes both the task the user is addressing and the setting. Some tools are quite task specific (eg, a sepsis alert), but for generative or agentic AI tools capable of aiding in many tasks, defining exactly what tasks are being addressed in a particular evaluation can be challenging. Even when the task is narrow, a tool's performance can vary considerably by setting.⁷⁹ For example, a sepsis alert's effectiveness may depend on site of deployment (emergency department vs hospital ward; community vs teaching hospital), how it is incorporated into workflow, and many other supporting and competing activities and priorities in the workplace. 80,81 The intervention and context for DTC tools can also be very hard to define given the potentially wide range of relevant user characteristics (eg, digital literacy), customization options of the software, and, especially for generative and agentic AI, breadth of tasks. Defining the application and setting of use cases for business operations tools in a manner that is generalizable is similarly difficult.

Many of these challenges are well known in the evaluation of any complex health services or delivery intervention, and there are well accepted approaches in health services research and implementation science to deal with them. However, the delivery science of AI does present relatively unique issues. ⁸² For example, there are strategies to incorporate into an evaluation how a user's learning curve influences the effect of a complex intervention, but these strategies typically assume the tool is static. With some AI tools, there is the added complexity that the tool itself can also be learning (with improving or degrading predictive performance), in turn potentially changing user confidence.

Identifying the Mechanism of Action

Generalizability is aided by knowing not just if an intervention worked, but also how. For Al, assessing how an intervention works can be considered across 3 concentric layers. The inner layer is the tool's interpretability, a description of the mathematical model that drives the tool's decision-making processes. However, deep learning, generative, and agentic Al models are so complex that descriptions of their underlying mathematic structure may be hard to interpret and provide limited insight on their likely clinical performance. The middle layer is explainability, where the model's output decisions across a variety of settings (inputs) are used to provide a picture of how the tool behaves. Explainability aids transparency when the underlying mathematical structure is hard to interpret, but it can be difficult to know if the model's performance is adequately explained across all reasonable situations it might encounter.⁸³

Explainability is typically explored post hoc in existing datasets, but the accuracy of an AI model when applied retrospectively is not necessarily indicative of how care decisions will be influenced by the tool in practice. ⁸⁴ The outer layer, therefore, is a prospective evaluation of how the tool performs as an actual intervention in real-world settings. ⁸⁵ This layer would ideally assess the extent to which the tool's performance depends on the other features of the intervention (the human-computer interface and user training) and the context in which the tool is deployed. For AI with wide applicability, such as generative and agentic Al tools, comprehensive assessment of their real-world performance is particularly daunting.

Capturing Outcomes

For tools used in health care systems (clinical, health care business operations, and hybrid AI tools), health consequences can be captured using EHR data and standard clinical research data collection approaches. User experience may also be important, and can be captured using standard mixed-methods approaches. The problem is not how to capture relevant outcomes, but rather that these approaches are time-consuming and expensive, potentially exceeding that to develop the tool in the first place. This problem poses a 2-fold threat: either investigators will be dissuaded from doing any evaluation or evaluations will be limited, potentially omitting key outcomes or restricting to more feasible settings (eg, an academic medical center), thus compromising generalizability. For DTC tools, capturing their effects on health outcomes has added complexity, especially when the intent is to mitigate rare events in otherwise well individuals. For example, to determine whether an AI tool using heart rate data from a smartwatch could identify atrial fibrillation, investigators had to enroll more than 400 000 individuals and provide a multilayered system involving a nationwide telehealth service, independent clinician adjudication, and referral mechanisms to individuals' own clinicians.86

Inferring Causality

Ultimately, the goal is to understand the effect of an AI tool, not simply whether its use is associated with, but not the cause of, a particular outcome. The standard design for causal inference in health care is the randomized clinical trial (RCT). However, few AI tools have been evaluated by RCTs. 80,87-91 RCTs are typically expensive, timeconsuming, and focus on 1 or 2 interventions in 1 clinical setting. For Al tools, RCT designs used more commonly in health services research and implementation science (eg, cluster or stepped wedge designs with embedded qualitative components) may often be more applicable. 92 Regardless of the design choice, if an AI tool were to be evaluated across all reasonable use cases, each tool might require multiple RCTs. Given the rate at which AI tools are being developed, relying on RCTs, at least as currently conducted, as the default approach seems quite impractical. Newer RCT designs, such as platform trials and trials embedded in the EHR, may permit faster, cheaper RCTs. 93-100 Of note, many non-health care industries, including the insurance industry, have implemented systems for rapid randomized A/B testing to evaluate their business tools, especially digital technologies. ^{66,101-104} By contrast, health care systems rarely use randomized A/B testing to evaluate business operations, possibly because of perceived aversion to experimentation or beliefs that randomized data are unnecessary, unhelpful, or too hard to acquire.^{66,78,105}

The alternative approach is to use observational data. For example, the smartwatch study described above used a single-group cohort study to well characterize the performance characteristics of the Al tool. ⁸⁶ When comparing clinical outcomes for cohorts of individuals cared for with and without an Al tool, there are numerous quasiexperimental approaches to facilitate causal inference from observational data, albeit with the caveat that they often require additional data collection (eg, detailed information on variation in the setting in which the tool is used to allow

E5

jama.com JAMA Published online October 13, 2025

identification of candidate instrumental variables) and significant statistical expertise. 92,106

Who Is Responsible?

Even if there were agreement on the need and approach for an evaluation of the health effects of an AI tool, it is unclear who is responsible. For tools requiring FDA review, initial evaluation rests with the developer. However, the evaluation does not necessarily include assessment of real-world health effects. ¹⁰⁷ For tools exempt from FDA clearance, developers would likely conduct evaluations commensurate with their claims. For example, a DTC tool developer may evaluate subscriber loyalty, while a developer of a revenue cycle management tool may wish to demonstrate that their tool improves revenue. 108,109 However, in neither instance will the developer necessarily assess the health consequences of their tool. Health care delivery organizations may be motivated to conduct their own evaluations, but many may not have the funds or the expertise to conduct thorough evaluations. 7,110-115 Governments may provide grants to fund some evaluations, but such funding is far from comprehensive. Patients and communities are stakeholders who are not responsible for evaluation, but whose perspectives are crucial. However, their perspectives are not routinely included. 116,117

Challenges for the Regulation of AI Tools

Health and health care AI tools should be subject to a governance structure that protects individuals and ensures the tools achieve their potential benefits. For other health care interventions, regulatory oversight is an important part of that governance, assuring society and markets that an intervention is credible. However, the US has no comprehensive fit-for-purpose regulatory framework for health and health care AI. Reasons include the diverse and rapidly evolving nature of AI technology, the numerous agencies with jurisdiction over different types and aspects of AI, and a lack of regulatory frameworks specifically tailored for AI within these agencies. 41 Drug and traditional medical device development also benefits from international harmonization of regulatory standards. Although there are efforts to harmonize standards for AI, there are important international differences. For example, both the Biden and Trump administrations have reduced regulatory burden, while the European Union has enacted a comprehensive framework for greater regulatory oversight. 41,118,119

In the US, the FDA regulates any Al tool classified as a medical device (ie, a technology used to diagnose, treat, mitigate, cure, or prevent a disease or condition), regardless of whether it is used by a clinician or consumer. The FDA applies a risk-based, function-specific approach to provide the least burdensome assurance of safety and effectiveness. This approach includes determining what types of devices to focus on and what level of evidence is required for marketing. Although the agency has reviewed Al-enabled devices for many years, its scope is limited by resources and congressional law. For example, the 21st Century Cures Act excludes software (including Al software) from the definition of medical device if its function is to provide administrative support (eg. scheduling and billing), general wellness support, some types of clinical decision support, and a number of EHR and data management functions. Tizo As such, many Al tools discussed here are exempt from

FDA regulation. ¹²⁰ Even for tools over which the FDA does have authority, as noted above, clearance does not necessarily require demonstration of improved clinical outcomes. ¹⁰⁷ Notably, generative and agentic Al tools can be capable of so many tasks as to seriously challenge the traditional intended use framework for device regulation. ^{3,41} Rather, they more closely resemble health care professionals, raising the idea that states could one day license Al agents as digital physicians.

EHR-based AI tools that do not meet the definition of a medical device fall under the Assistant Secretary for Technology Policy/Office of the National Coordinator for Health Information Technology, which offers voluntary certification for health information technology systems, including EHR platforms, based on demonstration of a product's transparency, risk management, trustworthiness, and fairness. 121 Similarly, some laboratory-based clinical AI tools that do not meet the definition of a medical device can be used via the Centers for Medicare & Medicaid Services (CMS) clinical laboratory improvement amendments program. 122 Use of some business operations tools like prior authorization software are also subject to CMS guidelines, but only when used by entities subject to CMS regulation. 123 DTC general wellness tools fall under the Federal Trade Commission (FTC), whose focus is privacy rights, security of personal information, and protection from false advertising and unfair or deceptive practices. 42 Partly to fill gaps in federal oversight, there are numerous regulatory and certification efforts by state governments and professional medical societies.41

Challenges for the Responsible Use (Implementation and Monitoring) of AI Tools

The features of AI tools that are challenging for evaluation and regulation are also challenging for implementation and monitoring. For example, for tools used in health care systems, the high dependency of their effectiveness on user training and context means health care systems require considerable infrastructure and resources to ensure users are appropriately trained and the tool is used in the optimal setting. ^{26,110,112} Because the tool may be subject to little prior evaluation and regulation, guidelines on how to ensure optimal use may also be lacking.⁷ Even if previously shown to be beneficial, whether the tool is actually beneficial in a particular setting or continues to be beneficial over time is uncertain. 7,41,107,110 However, without adequate sample size, infrastructure, expertise, and resources, a health care system will be unable to determine whether its use of the tool is beneficial and therefore when best to adopt or de-adopt it. For DTC tools that are outside FDA oversight but under the FTC's jurisdiction, the types of practices the FTC polices are much narrower than the full suite of problems that can arise from Al implementation and threaten patients' and clinicians' interests. Additional components of appropriate implementation are the need to show that a tool's use is both fair and patient-centered (eg, not financially toxic), but demonstrating that these criteria are met is not straightforward. 124-126 Former FDA Commissioner Robert Califf recently summarized the problem, stating "I have looked far and wide, I do not believe there's a single health system in the United States that's capable of validating an AI algorithm that's put into place in a clinical care system."25

JAMA Published online October 13, 2025

E6

Table 2. Strategies to Improve Development and Dissemination of Artificial Intelligence (AI) Tools in Health and Health Care

and nearth care			
Strategy	Rationale	Examples of rollout	
Engage all stakeholders in total product life cycle	Traditional sequenced pathway from development to evaluation to regulatory	• Engage patients and clinicians in design and development	
management	approval (if required) to dissemination with monitoring (if required), with each step shepherded by different stakeholders, is not well suited for AI tools	 Partner developers with health care systems in deployment evaluations and safety mitigation 	
	In particular, full evaluation of health consequences not possible until tool is disseminated	 Engage regulators, health care systems, and developers in collaborative monitoring plan, including determination of need to capture health consequences 	
	Greater engagement of all relevant stakeholders in each phase of a tool's life cycle may augment development, dissemination, and impact on health		
Develop and implement the right measurement tools for evaluation,	Without new methods, any effort to increase oversight and assurance will likely be cumbersome, expensive, and potentially	 Integrate and deploy proposed safety and compliance approaches (eg, Joint Commission/CHAI collaboration) 	
regulation and monitoring	ineffective In particular, no good tools exist to quickly and efficiently assess health consequences	 Develop and promulgate novel methods to facilitate fast, efficient yet robust evaluations of health consequences 	
	of AI tools across all relevant settings and use cases	 Adopt standards for evaluating health consequences (not just safety) during deployment 	
Build the right data infrastructure and	Without a better data infrastructure and learning environment, any effort to	Create nationally representative retrospective health care data sandbox	
learning environment	increase oversight and assurance will likely be cumbersome, expensive, and potentially ineffective	Learn from the FDA Sentinel program and learning health system initiatives to support curation of regularly updated data on tool	
	In particular: Poor data collection, access, and	deployment within nationally representative cohort of health care systems	
	interoperability hamper ability to quickly and efficiently construct and interrogate relevant nationally representative data on	Eventually create federated platform capable of rapid prospective evaluations capable of robust causal inference	
	Al tool use and effects Institutions capable of robust deployment and assessment may be poorly	Provide training and resources for health care systems to conduct or participate in evaluations of health consequences of	
Constantly winds in a setting	representative of many important settings	Al tools	
Create the right incentive structure	Current incentives are not well aligned across different stakeholders, potentially impeding progress	 Federal funds (eg, akin to those provided by HITECH) to incentivize health care systems to adopt data interoperability standards 	
	Market forces alone may not guarantee optimal development and dissemination of Al tools	Federal research funding for novel methods development	
	The strategic initiatives listed above may require specific incentives		

Abbreviations: CHAI, Coalition for Health AI; FDA, US Food and Drug Administration; HITECH, the Health Information Technology for Economic and Clinical Health Act.

Potential Solutions

All stakeholders agree that health and health care AI should be fair, appropriate, valid, effective, and safe. 5,24,113,119,121,127-140 However, creating an environment that promotes innovation and dissemination in accordance with these principles will be extremely difficult. Three big issues dominate the landscape. First, the traditional linear pathway for health care interventions, composed of discrete steps from development and evaluation through regulatory authorization to monitored dissemination, each managed by specific stakeholders, does not easily fit AI because the tools are so broad and flexible, evolving rapidly, and hard to fully evaluate until embedded in practice. Many tools will enter practice with limited evaluation, possibly no regulatory review, and, unless new approaches are adopted, be monitored only for process compliance and safety, not for effectiveness. Second, with current methods and infrastructure, any attempt to impose comprehensive evaluation, implementation, and monitoring approaches would likely be prohibitively expensive. Third, there are many stakeholders, with no overarching incentive or accountability structure. Addressing these issues will require progress in 4 areas (Table 2).

Engage Stakeholders in Total Product Life Cycle Management

The first step, endorsed by multiple government agencies and nongovernmental organizations, is to recognize the need for holistic, continuous, multistakeholder, team-based management of AI tools across their entire life cycle, from development to deployment. ^{7,26,121,135-138,141-144} For example, greater engagement of patients and clinicians with developers in the design and development phases of an AI tool can enhance its transparency and trustworthiness. ^{26,116,142,144} Similarly, developers can help health care systems with deployment, monitoring, and fixing problems such as model hallucinations. ^{26,142} And the ability of regulators to reassure the public about the safety and effectiveness of AI tools requires collaborative engagement with both developers and health care systems. ^{7,120,143} These multistakeholder partnerships go beyond traditional seller-client or developer-regulator relationships, but will be key to successful total product life cycle management.

jama.com JAMA Published online October 13, 2025 **E7**

Develop and Implement Proper Evaluation and Monitoring Tools

There are many proposed standards and certification processes for AI tools. 145 For example, the quality of an evaluation could be judged using APPRAISE-AI, CONSORT-AI, DECIDE-AI, SPIRIT-AI, or TRIPOD+AI guidelines; a tool's design, intended use, and performance could be reported and labeled, similar to an FDA nutrition label, with a model card and its real-world use could be assessed locally by a health care system, which could itself be certified as Al ready. 110,112,128,135,136,146-153 Approaches adopted by individual health care systems could also serve as resources for other systems. 110,112 Together, these evaluation and monitoring approaches could provide so-called algorithmovigilance, akin to pharmacovigilance. 154 However, evidence is lacking about the extent to which these various initiatives are practical, sustainable, adequately accessible, able to provide the guarantees they purport to provide, or adequately comprehensive yet not unnecessarily redundant. Piloting, fine-tuning, and integrating them into a comprehensive package would be a significant advance. One step in this regard is The Joint Commission's partnership with the Coalition for Health AI (CHAI) to develop and roll out a certification process for health care systems' responsible use of AI. 155

That said, the monitoring standards proposed thus far focus on safety and process compliance. 110,135,136,153,155,156 None address how effectiveness (ie, improved clinical outcomes) will be determined across different settings and over time. Effectively, there is a tacit assumption that proving effectiveness is either unnecessary or is sufficiently demonstrated by premarketing testing (and will be maintained assuming a tool's use remains safe). Here, setting standards and providing training and resources for health care systems to conduct or participate in evaluations of the causal effects of an AI tool during use (eg, routine use of randomized batched stepped wedge designs or nonrandomized interrupted time series) would be helpful. This approach could extend to business operations tools (eg, setting standards and providing the training and resources for greater use of A/B testing). Novel methods to aid logistic and analytic aspects of these causal inference evaluations will also be required, especially for DTC tools and tools based on generative or agentic AI. These evaluation methods themselves may rely heavily on AI. 106,157

Build the Proper Data Infrastructure and Learning Environment

The generation of efficient, fast, robust, and generalizable information on the safety and effectiveness of AI tools requires a significant investment in data infrastructure and analytic capacity. 158,159 Some questions can be addressed within a single health care system, but even large, well-resourced health care systems with their own analytic and implementation specialist expertise may struggle to conduct routine swift yet robust analyses. Furthermore, many evaluations, especially if intended to provide reassurance that AI tools are safe and effective across diverse settings and populations, will require data from multiple health care systems or data that link DTC apps with health care. Organizations like CHAI propose the creation of retrospective datasets from partnering health care systems. 135 Such datasets could be curated and made accessible to developers as a sandbox for AI tool development and exploration of model performance across different populations and settings. However, evaluation of real-world use requires data be shared on

a tool's use, which requires a mechanism to obtain regular data updates and include many data elements not just about patients and setting, but about tool use and clinical workflows. CHAI announced recently its intention to expand in this direction, although managing frequent data updates with new, potentially proprietary, information about specific tools will be very challenging. ¹⁶⁰ Such a system could mimic pharmacovigilance efforts like the FDA-supported Sentinel initiative, though with richer information on tool use. ^{136,157,161} Though Sentinel has been successful, it required considerable effort to ensure data quality, interoperability, and sharing. ¹⁶²

Crucially, any prospective evaluations of AI tools, especially involving randomization, would need an even more sophisticated and integrated collaboration across health care systems with real-time or near-real-time data access. Some individual health care systems have created the data and analytic capacity necessary to function as a learning health system. 163 Here, such a system would effectively be a multicenter learning health system collaborative. From a practical standpoint, a federated data approach may work best, where health care system data remain in place, reducing some logistic and contractual burdens. However, there are many financial, contractual, and operational challenges to the creation of such a collaborative. 158 That said, if successful and assuming the collaborative was representative of the breadth of patient populations and clinical settings seen nationally, it would not only inform the responsible use of AI tools across their entire life cycle, but could also support evaluation of other health care interventions and data interoperability solutions. 66,164-166 Such an initiative would require federal support, but aligns well with the Department of Health and Human Services' priorities. 167-170

Create the Right Incentive Structure

The entire motivation to implement, adopt, and monitor health and health care AI tools requires adequate incentives for relevant stakeholders to participate. If left as an underregulated market, it is unclear whether the right tools will be developed, whether tools will be adopted in a manner that maximizes their beneficial effects on health while minimizing risk, and whether their effects will be measured properly. It is also possible that market forces will provide perverse incentives, such as adoption of tools that maximize developer profits or health system operating margins while inadvertently compromising health care quality or health outcomes. ¹⁷¹ Where there is little federal regulation, states may enact a patchwork of heterogeneous policies, making compliance overly burdensome for developers, and thus accidentally stifling investment. ⁴¹ It seems necessary, therefore, to develop legislation, regulation, and market designs that align incentives for appropriate multistakeholder engagement.

Some priorities may be achieved through the market. For example, the desire to engage patients and clinicians in the codesign of AI tools may be achieved spontaneously if developers anticipate individuals and health systems will be more willing to purchase such tools. Other priorities may be harder to achieve without specific policy levers. For example, health care systems face considerable costs standing up the digital infrastructure and technical expertise required to ensure they are meeting responsible use standards or to collaborate in federated learning initiatives. While some health care systems may make the necessary investments in response to market forces, such as the opportunity to foster commercial partnerships with developers or gain advantage over competitors, more

JAMA Published online October 13, 2025

E8

uniform investment by all systems may require stronger government levers, such as financial incentives or regulatory requirements. A potential model is the Health Information Technology for Economic and Clinical Health Act: although numerous challenges with digital health information persist, it is notable that a relatively modest federal investment of \$35 billion led to EHR adoption by more than 97% of health care systems within a decade. 167,172 Federal research funds may also be required to develop robust yet efficient evaluation methods for AI tools in real-world settings, fostering partnerships among developers, health services research/implementation science experts, and health care delivery systems. Health care market forces often fail to provide adequate care to vulnerable populations without government intervention, and the same will likely hold for the responsible use of AI in resource-poor settings. It is also likely that greater transparency with regard to the health effects of DTC or business operations tools will require greater regulation.

Implications for the Health Care Workforce

The impact of AI on the health care workforce will be wide-ranging. Clinicians may be excited by the potential benefits, worry about job displacement, and enjoy or resist requirements to improve their AI literacy. They may also have existential concerns like misalignment of human and AI ethos, goals, and principles. Although their comfort with AI is increasing, US physicians blame lack of regulatory oversight as the primary reason for their lack of trust and adoption of both clinical and health care business operations tools. The Health care worker unions are also raising concerns about unsafe and underregulated AI. The workforce composition may also need to change, adding more experts in the development, implementation, and evaluation of AI tools. The Mary Clinicians work, albeit with key caveats.

First, AI tools can change which health care professional executes which task. For example, a portable echocardiography machine with AI-based interpretation upskills the ultrasound technician, potentially obviating the need for interpretation by a cardiologist or radiologist. 10 The benefit is improved access for patients by helping to close care gaps, especially in underserved settings. However, such tools could create friction between health care professional groups, eg, by challenging the scope of practice regulations. They may also change the required skills of different health care professionals, such as AI literacy. To anticipate and manage such changes, health care systems must think beyond educating a health care professional in how to use a particular AI tool and instead rethink entire organizational structures, workforce composition, skill distribution, and accountability across hierarchical levels. Of course, the most extreme example would be when a DTC tool obviates the need for an individual to seek professional care altogether. This potential will vary greatly depending on the health problem, and therefore affect specialties very differently, but such disruption seems inevitable.

Second, beyond focused learning to use any particular tool, there is a need to include a foundational understanding of AI for health care professionals in both training and continuing education. Though many clinical tools may provide information that a health care professional can use without understanding the underlying technol-

ogy (eg, computer tomography or whole genome sequencing), Al tools not only provide information but also contribute to judgment under conditions of uncertainty. Health care professionals should therefore better understand the strengths and weakness of their own decision-making and the susceptibilities and unintended consequences when sharing judgment tasks with an Al tool. These learning requirements also apply to health care administrators using business operations Al tools.

Third, new technology is often first available to, and adopted by, individuals and organizations with greater means and resources. If AI tools are to be developed and disseminated in a manner that is fair, equitable, and does not widen the digital divide, then any education and reorganization efforts must include those parts of health care delivery responsible for the most vulnerable groups. Of course, efforts to ensure fair access to AI must also be cognizant of the risks of deploying a tool with potential untoward consequences in settings poorly equipped to detect them.

Fourth, many AI tools are aimed at reducing the administrative burden on health care professionals (eg, medical record documentation or prior authorization appeals) on the premise that this burden contributes to burnout, low morale, and stress. However, this line of reasoning may have flaws. First, burnout, low morale, and stress are wicked problems; it is a tall ask to expect an AI tool to fix them. The Second, if freed from administrative tasks, clinicians may be asked to see more patients, which could also cause burnout. Third, focusing on tools to automate tasks such as prior authorization potentially misses the larger opportunity to rethink entirely the purpose and value of such tasks.

Fifth, because optimal AI tool development and dissemination requires much more integration with care delivery than that required of traditional technology development, health care professionals will need to understand that they are participants in the continuous learning, improvement, and evaluation cycle of these products. Although clinicians use traditional drugs and devices off label, the degree of uncertainty regarding the benefits and harms of an AI tool may be considerably greater. As long as clinicians know they have a voice in this effort, their contributions to improve the performance of AI tools could be a source of job satisfaction.

Additional Considerations

Though not discussed in detail here, important ethical and legal issues will affect adoption of health and health care Al. One issue is data rights, privacy, and ownership. Health and health care data are essential fuel for Al tools. Although one can ascribe where health and health care data originate, it is less clear who owns, or ought to own, the data, especially when aggregated and transformed, and what rights for privacy and use extend, or should extend, to whom. ¹⁸⁰ The Health Insurance Portability and Accountability Act and US intellectual property law provide some guidance on privacy rights, security obligations, trade secrets, and ownership of tools developed from data, but are less clear on ownership of underlying data and do not protect against emergence of dark markets, reflect all ethical considerations, or fully align with state or international legislation, such as the EU's Al Act and General Data Protection Regulation. ¹⁸⁰⁻¹⁸⁷

A second issue is how to provide ethical oversight of AI as it is deployed. ¹⁸⁸ One argument is that decisions by health care systems

E9

jama.com JAMA Published online October 13, 2025

to deploy AI tools are part of clinical care operations. 189,190 Any evaluation of the success or not of the deployment is quality improvement, not research, and exempt from the ethical oversight required of human subjects research. 191 The alternate argument is that Al tool deployment is rolled out under conditions of uncertainty, and the goal of any evaluation is to generate knowledge that would benefit future patients. 192 Thus, such evaluations are research, even if they are also quality improvement, and should fall under the purview of the local institutional review board and principles of the Common Rule. 66,193 Currently, both approaches occur, reflecting the broader debate regarding how best to provide ethical oversight of learning health systems. ^{66,194-196} An additional aspect of this problem is that, regardless of which body provides oversight (institutional review board or otherwise), the competency required to oversee ethical AI deployment may be lacking without adequate infrastructure, resources, and training. 110,112,197

Finally, use of AI tools has thus far largely been voluntary. However, as their benefits become more established, failure to use an AI tool may be considered unethical or a breach of standard care. A health care system or professional may thus be liable in a malpractice suit for failing to use AI. ^{198,199} At the same time, if a plaintiff sues for an adverse outcome when care was provided in which an AI tool was involved, the question arises of whether liability rests with the health

care professional, the health care system, or the developer of the tool. Though relevant case law is currently limited, developers, health care systems, and health care professionals will all have to adopt strategies to manage their liability risk. ^{139,200} These examples are just some of the many new issues that will need to be addressed as AI becomes more incorporated in health and health care.

Conclusions

Al will massively disrupt health and health care delivery in the coming years. The traditional approaches to evaluate, regulate, and monitor novel health care interventions are being pushed to their limits, especially with generative and agentic Al, and especially because the tools' effects cannot be fully understood until deployed in practice. Nonetheless, many tools are already being rapidly adopted, in part because they are addressing important pain points for end users. Given the many long-standing problems in health care, this disruption represents an incredible opportunity. However, the odds that this disruption will improve health for all will depend heavily on creation of an ecosystem capable of rapid, efficient, robust, and generalizable knowledge about the consequences of these tools on health.

ARTICLE INFORMATION

Accepted for Publication: September 5, 2025. Published Online: October 13, 2025. doi:10.1001/jama.2025.18490

Author Affiliations: JAMA, Chicago, Illinois (Angus, Khera, Lieu, Perlis, Ross, Seymour); Yale University, New Haven, Connecticut (Angus, Khera); Kaiser Permanente, Pleasanton, California (Lieu, V. Liu, Bindman, Lee, Ouyang); Northwestern University, Chicago, Illinois (Ahmad); CHAI, Boston, Massachusetts (Anderson); Emory University, Atlanta, Georgia (Bhavani, Gichoya); Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Brennan): MIT. Cambridge. Massachusetts (Celi); American Medical Association, Chicago, Illinois (Chen, Desai, Lomis); Harvard Law School, Cambridge, Massachusetts (Cohen); University of Birmingham, Birmingham, United Kingdom (Denniston, X. Liu): Vanderbilt University Medical Center, Nashville, Tennessee (Embí); Imperial College London, London, United Kingdom (Faisal); Universität Bayreuth, Germany (Faisal); Johns Hopkins University, Baltimore, Maryland (Ferryman, Gross, Saria): Epic, Verona. Wisconsin (Gerhart); Stanford University, Stanford, California (Hernandez-Boussard, Mello, N. H. Shah); Google, Mountain View, California (Howell); University of Pennsylvania, Philadelphia (Johnson); Microsoft Al. London, United Kingdom (X. Liu): Carnegie Mellon University, Pittsburgh, Pennsylvania (London); University of California, San Diego Health (Longhurst); Boston Children's Hospital, Boston, Massachusetts (Mandl); Harvard Medical School, Boston, Massachusetts (Mandl, Perlis); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California (McGlynn); San Ysidro Health, San Diego, California (Munoz); Yale School of Medicine, New Haven, Connecticut (Ohno-Machado, Ross, Schwamm); Apple, Cupertino, California (Phillips); Microsoft, Redmond, Washington (Rhew, Weinstein);

University of Pittsburgh, Pittsburgh, Pennsylvania (Seymour); Meta, Menlo Park, California (R. Shah); University of Utah, Salt Lake City, Utah (R. Shah); University of California, San Diego (Singh); Sutter Health, Sacramento, California (Solomon); The Joint Commission, Oakbrook Terrace, Illinois (Spates); University of Michigan Medical School, Ann Arbor (Spector-Bagdady); Health Care and Organizational Economist, Palo Alto, California (Wang); University of Michigan, Ann Arbor (Wiens); Editor in Chief, JAMA and the JAMA Network, Chicago, Illinois (Bibbins-Domingo).

Conflict of Interest Disclosures: Dr Khera reported receiving grants from National Institutes of Health (NIH: 1R01HL167858, 1R01AG089981, and 5K23HL153775), Bristol Myers Squibb, BridgeBio, and Novo Nordisk and being an academic cofounder of Ensight-AI and Evidence2Health outside the submitted work. Dr V. Liu reported receiving grants from NIH during the conduct of the study. Dr Ahmad reported receiving nonfinancial support from Pfizer, grants from Atman Health. Tempus and Abiomed, and personal fees from AstraZeneca and Alnylam Pharmaceuticals outside the submitted work. Dr Bhavani reported receiving grants from NIH and Kaiser Permanente outside the submitted work. Dr Cohen reported being supported in part by a Novo Nordisk Foundation Grant for a scientifically independent International Collaborative Bioscience Innovation & Law Programme (Inter-CeBIL programme No. NNF23SA0087056); receiving grants from Novo Nordisk Foundation (NNF23SA0087056) during the conduct of the study serving as the chair of the ethics advisory board for Illumina, a member of the Bayer Bioethics Council a bioethics advisor for Bexorg, and an advisor for World Class Health and Manhattan Neuroscience; receiving compensation for speaking at events organized by Philips with the Washington Post as well as the Doctors Company; and being retained as an expert in health privacy, gender-affirming care, and reproductive

technology lawsuits. Dr Embi reported having a patent for Vanderbilt Algorithmovigilance Monitoring and Operations System licensed to VigilAI, Inc. Dr Ferryman reported receiving personal fees from Merck KGaA and All of Us Research Program outside the submitted work. Dr Gross reported receiving grants from Yosemite to Johns Hopkins during the conduct of the study; being founder/CEO of de-bi, co. outside the submitted work; and having a patent for application No. 19/220,825 and PCT/US25/31199 pending through de-bi, co. that is broadly relevant to health systems transparency and data ownership. Dr Howell reported being employed by Google and owning equity in Alphabet outside the submitted work and having a patent related to understanding sound using deep learning licensed to Google (EP3762942B1). Dr Johnson reported receiving grants from NIH during the conduct of the study. Dr X. Liu reported being an employee of Microsoft Al and previously serving as a health scientist at Apple and receiving consulting fees from Hardian Health and Conceivable Life Sciences; and currently serving as a board member of the MHRA Airlock Steering Committee. Dr McGlynn reported receiving travel expense to summit from Gordon and Betty Moore Foundation and being employed by Kaiser Permanente during the conduct of the study. Dr Mello reported receiving personal fees from AVIA and Augmedix, and grants from Stanford Health Care, Patient-Centered Outcomes Research Institute, and Stanford Impact Labs outside the submitted work and spousal employment with Cisco Systems, Inc. Dr Perlis reported receiving personal fees from Genomind, Circular Genomics. and Alkermes outside the submitted work. Dr Ross reported receiving grants from the Food and Drug Administration, Johnson & Johnson, Medical Devices Innovation Consortium, AHRQ, NIH/ National Heart, Lung, and Blood Institute, and Arnold Ventures outside the submitted work and serving as an expert witness at the request of

E10 JAMA Published online October 13, 2025

relator's attorneys, the Greene Law Firm, in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen Inc. that was settled September 2022. Dr Saria reported serving as CEO and a board member of Bayesian Health, serving as a board member of the Coalition of Health AI, serving as an advisor for Century Health, serving as an advisory board member of Duality Tech, and receiving grants from Gordon and Betty Moore Foundation, FDA Center of Excellence, and NIH Center outside the submitted work. Dr Schwamm reported having a patent for US2024031761 pending for an AI enabled stroke classifier and serving as an unpaid content advisor on digital health to the Stroke editorial board and a voluntary member of a client hospital advisory committee for Abridge, an ambient AI clinical documentation company, on behalf of Yale New Haven Health System. Dr Seymour reported receiving grants from NIH during the conduct of the study and personal fees from Octapharma, Beckman Coulter, and Edwards LifeSciences outside the submitted work. Dr N. Shah reported being a cofounder of Prealize Health (a predictive analytics company) as well as Atropos Health (an on-demand evidence generation company) and serving on the board of the Coalition for Healthcare AI (CHAI), a consensus-building organization providing guidelines for the responsible use of artificial intelligence in health care and serving as an advisor to Opala, Curai Health, JnJ Innovative Medicines, and AbbVie Pharmaceuticals. Dr Singh reported receiving personal fees from Google through serving on Google's Consumer Health Advisory Panel and as a paid consultant during the conduct of the study. Dr Spector-Bagdady reported receiving grants from National Center for Advancing Translational Sciences and The Greenwall Foundation during the conduct of the study. Dr Wang reported receiving personal fees from Kaiser Permanente, Health Al Partnership, SCAN Foundation, Emerson Collective, and Gordon and Betty Moore Foundation outside the submitted work; and serving on the advisory council for Health Al Partnership. Dr Wawira Gichova reported receiving grants from NIH, Clarity, and LUNIT during the conduct of the study and speaker fees from Cook Medical outside the submitted work. Dr Wiens reported receiving travel fees from Kaiser Permanente during the conduct of the study. No other disclosures were reported.

Group Information: The JAMA Summit on AI participants appear in the Supplement.

Disclaimer: Drs Angus, Khera, Lieu, Perlis, Ross, Seymour, and Bibbins-Domingo are editors at *JAMA* and the JAMA Network but were not involved in any of the decisions regarding review of the manuscript or its acceptance.

Disclaimer: The US Food and Drug Administration (FDA) participated in the JAMA AI Summit on October 15-16, 2024, but the contents of this article represent the views of the authors and do not necessarily represent the official views of, and are not an endorsement by, the FDA/Department of Health and Human Services or the US government. The views, findings, and interpretations contained in this article do not constitute FDA guidance, position on this matter, or legally enforceable requirements

Additional Contributions: We dedicate this work to the memory of Atul Butte, a giant in the field

whose advice in the planning of this JAMA Summit was invaluable.

REFERENCES

- 1. Rajpurkar P, Chen E, Banerjee O, Topol EJ. Al in health and medicine. *Nat Med*. 2022;28(1):31-38. doi:10.1038/s41591-021-01614-0
- 2. Canada's Drug Agency. 2025 Watch List: Artificial Intelligence in Health Care Technologies. Canadian Agency for Drugs and Technologies in Health; 2025.
- 3. Wachter RM, Brynjolfsson E. Will generative artificial intelligence deliver on its promise in health care? *JAMA*. 2024;331(1):65-69. doi:10.1001/jama. 2023.25054
- 4. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. *BMC Med Educ*. 2023;23(1):689. doi:10.1186/s12909-023-04698-z
- **5.** Ratwani RM, Classen D, Longhurst C. The compelling need for shared responsibility of AI oversight: lessons from health IT certification. *JAMA*. 2024;332(10):787-788. doi:10.1001/jama.2024. 12630
- **6**. Wiens J, Saria S, Sendak M, et al. Do no harm: a roadmap for responsible machine learning for health care. *Nat Med*. 2019;25(9):1337-1340. doi:10. 1038/s41591-019-0548-6
- 7. Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. *JAMA*. 2025;333(3):241-247. doi:10.1001/jama.2024.21451
- **8**. Howell MD, Corrado GS, DeSalvo KB. Three epochs of artificial intelligence in health care. *JAMA*. 2024;331(3):242-244. doi:10.1001/jama.2023.25057
- **9**. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. *JAMA*. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216
- **10**. Holste G, Oikonomou EK, Tokodi M, Kovács A, Wang Z, Khera R. Complete AI-enabled echocardiography interpretation with multitask deep learning. *JAMA*. 2025;334(4):306-318. doi:10.1001/jama.2025.8731
- 11. Kamran F, Tjandra D, Heiler A, et al. Evaluation of sepsis prediction models before onset of treatment. *NEJM*. 2024;1(3):Aloa2300032. doi:10.1056/Aloa2300032
- 12. Wong A, Otles E, Donnelly JP, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. *JAMA Intern Med.* 2021;181(8):1065-1070. doi:10.1001/jamainternmed.2021.2626
- 13. Alyoubi WL, Shalash WM, Abulkhair MF. Diabetic retinopathy detection through deep learning techniques: a review. *Inform Med Unlocked*. 2020;20:100377. doi:10.1016/j.imu.2020.100377
- 14. Soh CH, Wright L, Baumann A, et al; AGILE-Echo investigators in Tasmania, Western New South Wales, Northern Victoria, Western Australia, Western Queensland and Northern Territory, Australia. Use of artificial intelligence-guided echocardiography to detect cardiac dysfunction and heart valve disease in rural and remote areas: rationale and design of the AGILE-echo trial. *Am Heart J*. 2024;277:11-19. doi:10.1016/j.ahj.2024.08.004

- **15**. Boussina A, Shashikumar SP, Malhotra A, et al. Impact of a deep learning sepsis prediction model on quality of care and survival. *NPJ Digit Med.* 2024; 7(1):14. doi:10.1038/s41746-023-00986-6
- **16.** Arabi YM, Alsaawi A, Alzahrani M, et al; SCREEN Trial Group and the Saudi Critical Care Trials Group. Electronic sepsis screening among patients admitted to hospital wards: a stepped-wedge cluster randomized trial. *JAMA*. 2025;333(9):763-773. doi:10.1001/jama.2024.25982
- 17. Bhavani SV, Holder A, Miltz D, et al. The precision resuscitation with crystalloids in sepsis (PRECISE) trial: a trial protocol. *JAMA Netw Open*. 2024;7(9):e2434197-e2434197. doi:10.1001/jamanetworkopen.2024.34197
- **18**. Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. *Sci Transl Med*. 2015; 7(299):299ra122. doi:10.1126/scitranslmed.aab3719
- 19. Adams R, Henry KE, Sridharan A, et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. *Nat Med.* 2022;28(7):1455-1460. doi:10.1038/s41591-022-01894-0
- 20. US Food and Drug Administration. Artificial intelligence in software as a medical device. March 25, 2025. Accessed September 30, 2025. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-software-medical-device
- 21. Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. *Diagn Pathol*. 2023;18(1):109. doi:10.1186/s13000-023-01375-z
- 22. Rajpurkar P, Lungren MP. The current and future state of Al interpretation of medical images. *N Engl J Med.* 2023;388(21):1981-1990. doi:10. 1056/NEJMra2301725
- 23. Poon EG, Lemak CH, Rojas JC, Guptill J, Classen D. Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges. *J Am Med Inform Assoc*. 2025;32(7):1093-1100. doi: 10.1093/jamia/ocaf065
- 24. The American Medical Association. AMA augmented intelligence research: physician sentiments around the use of AI in health care: motivations, opportunities, risks, and use cases: shifts from 2023 to 2024. Published February 2025. Accessed September 23, 2025. https://www.ama-assn.org/system/files/physician-ai-sentiment-report.pdf
- 25. Tahir D. Health care AI, intended to save money, turns out to require a lot of expensive humans. *CBS News*. December 23, 2024. Accessed June 27, 2025. https://www.cbsnews.com/news/health-care-ai-cost-humans/
- **26**. Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: a perspective for healthcare organizations. *Artif Intell Med*. 2024;151:102861. doi:10.1016/j.artmed.2024.102861
- **27**. Parikh RB, Helmchen LA. Paying for artificial intelligence in medicine. *NPJ Digit Med*. 2022;5(1): 63. doi:10.1038/s41746-022-00609-6
- **28**. Krishnamoorthy M, Sjoding MW, Wiens J. Off-label use of artificial intelligence models in healthcare. *Nat Med*. 2024;30(6):1525-1527. doi:10. 1038/s41591-024-02870-6

E11

jama.com JAMA Published online October 13, 2025

- **29**. Khanijahani A, Iezadi S, Dudley S, Goettler M, Kroetsch P, Wise J. Organizational, professional, and patient characteristics associated with artificial intelligence adoption in healthcare: a systematic review. *Health Policy Technol*. 2022;11(1):100602. doi:10.1016/j.hlpt.2022.100602
- **30**. Jabbour S, Fouhey D, Shepard S, et al. Measuring the impact of AI in the diagnosis of hospitalized patients: a randomized clinical vignette survey study. *JAMA*. 2023;330(23):2275-2284. doi:10.1001/jama.2023.22295
- **31**. Khera R, Simon MA, Ross JS. Automation bias and assistive AI: risk of harm from AI-driven clinical decision support. *JAMA*. 2023;330(23):2255-2257. doi:10.1001/jama.2023.22557
- **32.** Biro JM, Handley JL, Malcolm McCurry J, et al. Opportunities and risks of artificial intelligence in patient portal messaging in primary care. *NPJ Digit Med*. 2025;8(1):222. doi:10.1038/s41746-025-01586-2
- **33.** Mandl KD. How AI could reshape health care-rise in direct-to-consumer models. *JAMA*. 2025;333(19):1667-1669. doi:10.1001/jama.2025. 0946
- **34**. De Freitas J, Cohen IG. The health risks of generative Al-based wellness apps. *Nat Med*. 2024; 30(5):1269-1275. doi:10.1038/s41591-024-02943-6
- **35**. Grand View Research. mHealth market size, share & trends analysis report (2024-2030). Accessed June 27, 2025. https://www.grandviewresearch.com/industry-analysis/mhealth-market
- **36**. Wongvibulsin S, Yan MJ, Pahalyants V, Murphy W, Daneshjou R, Rotemberg V. Current state of dermatology mobile applications with artificial intelligence features. *JAMA Dermatol*. 2024;160(6): 646-650. doi:10.1001/jamadermatol.2024.0468
- **37**. Haque MDR, Rubya S. An overview of chatbot-based mobile mental health apps: insights from app description and user reviews. *JMIR Mhealth Uhealth*. 2023;11(1):e44838. doi:10.2196/
- **38**. Triantafyllidis A, Kondylakis H, Katehakis D, et al. Smartwatch interventions in healthcare: a systematic review of the literature. *Int J Med Inform.* 2024;190:105560. doi:10.1016/j.ijmedinf.2024. 105560
- **39**. Reeder B, David A. Health at hand: a systematic review of smart watch uses for health and wellness. *J Biomed Inform*. 2016;63:269-276. doi:10.1016/j. jbi.2016.09.001
- **40**. Wells C, Spry C. *An Overview of Smartphone Apps: CADTH Horizon Scan*. Canadian Agency for Drugs and Technologies in Health; 2022.
- **41**. Mello MM, Cohen IG. Regulation of health and health care artificial intelligence. *JAMA*. 2025;333 (20):1769-1770. doi:10.1001/jama.2025.3308
- **42.** Simon DA, Shachar C, Cohen IG. Skating the line between general wellness products and regulated devices: strategies and implications. *J Law Biosci.* 2022;9(2):lsac015. doi:10.1093/jlb/leac015
- **43**. Abu Dabrh AM, Reddy K, Beech BM, Moore M. Health & wellness coaching services: making the case for reimbursement. *Am J Lifestyle Med*. 2024; 19(6):800-813. doi:10.1177/15598276241266784
- **44**. Gordon WJ, Landman A, Zhang H, Bates DW. Beyond validation: getting health apps into clinical

- practice. NPJ Digit Med. 2020;3(1):14. doi:10.1038/ s41746-019-0212-z
- **45**. Powell AC, Bowman MB, Harbin HT. Reimbursement of apps for mental health: findings from interviews. *JMIR Ment Health*. 2019;6(8): e14724. doi:10.2196/14724
- **46**. He X, Zheng X, Ding H. Existing barriers faced by and future design recommendations for direct-to-consumer health care artificial intelligence apps: scoping review. *J Med Internet Res.* 2023;25: e50342. doi:10.2196/50342
- **47.** Giebel GD, Speckemeier C, Abels C, et al. Problems and barriers related to the use of digital health applications: scoping review. *J Med Internet Res*. 2023;25:e43808. doi:10.2196/43808
- **48**. Bower JL, Christensen CM. Disruptive technologies: Catching the wave. *Harv Bus Rev.* 1995;73(1):43-53.
- **49**. Adner R, Weinstein J. GenAl could transform how health care works. *Harvard Business Review*. November 27, 2023. Accessed September 23, 2025. https://hbr.org/2023/11/genai-could-transform-how-health-care-works
- **50**. Chen M, Decary M. Artificial Intelligence in Healthcare: An Essential Guide for Health Leaders. Sage Publications; 2020:10-18.
- **51**. Boussina A, Krishnamoorthy R, Quintero K, et al. Large language models for more efficient reporting of hospital quality measures. *NEJM AI*. 2024;1(11):Alcs2400420. doi:10.1056/aics2400420
- **52.** Mahmoudian Y, Nemati A, Safaei AS. A forecasting approach for hospital bed capacity planning using machine learning and deep learning with application to public hospitals. *Healthc Anal (N Y)*. 2023;4:100245. doi:10.1016/j.health.2023.100245
- **53.** Jalil MS, Mehedy MTJ, Saeed M, Snigdha EZ, Khan N. Optimizing revenue cycle management in healthcare: Al and IT solutions for business process automation. *The American Journal of Engineering and Technology*. 2025;7(03):141-162. doi:10.37547/taiet/Volume07lssue03-14
- **54.** Knight DR, Aakre CA, Anstine CV, et al. Artificial intelligence for patient scheduling in the real-world health care setting: a metanarrative review. *Health Policy Technol.* 2023;12(4):100824. doi:10.1016/j. hlpt.2023.100824
- **55.** O'Callahan K, Sitters S, Petersen M. 'You make the call': improving radiology staff scheduling with Al-generated self-rostering in a medical imaging department. *Radiography (Lond)*. 2024;30(3):862-868. doi:10.1016/j.radi.2024.03.014
- **56**. Deveci M. Effective use of artificial intelligence in healthcare supply chain resilience using fuzzy decision-making model. *Soft Comput*. Published online July 17, 2023. doi:10.1007/s00500-023-08906-2
- **57**. Khan FS, Masum AA, Adam J, Karim MR, Afrin S. Al in healthcare supply chain management: enhancing efficiency and reducing costs with predictive analytics. *J Comput Sci Technol Stud*. Published online November 17, 2024. doi:10.32996/jcsts.2024.6.5.8
- **58**. Busis NA, Khokhar B, Callaghan BC. Streamlining prior authorization to improve care. *JAMA Neurol.* 2024;81(1):5-6. doi:10.1001/jamaneurol.2023.4324
- **59**. Anand S. Automating prior authorization decisions using machine learning and health claim

- data. Int J Artif Intel, Data Sci, Machine Learning. 2022;3(3):35-44. doi:10.63282/3050-9262. IJAIDSML-V3I3P104
- **60**. Shachar C, Killelea A, Gerke S. *Al and Health Insurance Prior Authorization: Regulators Need to Step Up Oversight*. Health Affairs Forefront; 2024.
- **61**. Bharadiya JP, Thomas RK, Ahmed F. Rise of artificial intelligence in business and industry. *J Eng Res Rep.* 2023;25(3):85-103. doi:10.9734/jerr/2023/v25i3893
- **62**. Liu T-L, Hetherington TC, Dharod A, et al. Does Al-powered clinical documentation enhance clinician efficiency? a longitudinal study. *NEJM Al*. 2024;1(12):Aloa2400659. doi:10.1056/Aloa2400659
- **63**. Tierney AA, Gayre G, Hoberman B, et al. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. *NEJM Catalyst*. 2024;5(3)23.0404. doi:10.1093/jamia/ocae295
- **64.** Cao DY, Silkey JR, Decker MC, Wanat KA. Artificial intelligence-driven digital scribes in clinical documentation: pilot study assessing the impact on dermatologist workflow and patient encounters. *JAAD Int.* 2024;15:149-151. doi:10.1016/j.jdin.2024. 02.009
- **65**. Tierney AA, Gayre G, Hoberman B, et al. Ambient Artificial Intelligence Scribes: Learnings after 1 Year and over 2.5 Million Uses. *NEJM Catalyst*. 2025;6(5):CAT.25.0040. doi:10.1056/CAT.25.0040
- **66.** Angus DC, Huang AJ, Lewis RJ, et al; JAMA Summit on Clinical Trials Participants. The integration of clinical trials with the practice of medicine: repairing a house divided. *JAMA*. 2024; 332(2):153-162. doi:10.1001/jama.2024.4088
- **67.** Jackson GP, Shortliffe EH. Understanding the evidence for artificial intelligence in healthcare. *BMJ Qual Saf.* 2025;34(7):421-424. doi:10.1136/bmjqs-2025.018559
- **68**. Habib AR, Lin AL, Grant RW. The epic sepsis model falls short-the importance of external validation. *JAMA Intern Med*. 2021;181(8):1040-1041. doi:10.1001/jamainternmed.2021.3333
- **69**. Kwong JCC, Nickel GC, Wang SCY, Kvedar JC. Integrating artificial intelligence into healthcare systems: more than just the algorithm. *NPJ Digit Med*. 2024;7(1):52. doi:10.1038/s41746-024-01066-z
- **70**. Grundy Q. A review of the quality and impact of mobile health apps. *Ann Rev Public Health*. 2022; 43:117-134. doi:10.1146/annurev-publhealth-052020-103738
- 71. Lubell J. How AI is leading to more prior authorization denials. *AMA News Wire*. March10, 2025. Accessed September 26, 2025. https://www.ama-assn.org/practice-management/priorauthorization/how-ai-leading-more-priorauthorization-denials
- **72.** American Medical Association. 2024 AMA prior authorization physician survey. Accessed June 27, 2025. https://www.ama-assn.org/system/files/prior-authorization-survey.pdf
- 73. Pearce K. Blue Cross Blue Shield of Massachusetts uses artificial intelligence to speed review time, automate authorizations, and eliminate administrative costs. PRNewswire. October 12, 2022. Accessed June 27, 2025. https://newsroom.bluecrossma.com/2022-10-12-BLUE-CROSS-BLUE-SHIELD-OF-MASSACHUSETTS-USES-ARTIFICIAL-INTELLIGENCE-TO-SPEED-REVIEW-TIME, "AUTOMATE-AUTHORIZATIONS-ELIMINATE-ADMINISTRATIVE-COSTS

E12 JAMA Published online October 13, 2025

- **74.** Palantir. Palantir for hospitals. Accessed June 27, 2025. https://www.palantir.com/offerings/palantir-for-hospitals/
- **75.** DataBricks Data Solutions. Case studies: explore our case studies to learn how we empower healthcare and life sciences organizations with Data-Driven Al Solutions. Accessed June 27, 2025. https://dnamic.ai/data-case-studies/
- **76.** Olsen LM, Nabel EG, McGinnis JM, McClellan MB. Evidence-based medicine and the changing nature of health care: 2007 IOM Annual Meeting Summary. National Academies Press: 2008.
- 77. McGinnis JM, Olsen L, Goolsby WA, Grossmann C. Engineering a Learning Healthcare System: A Look at the Future: Workshop Summary. National Academies Press; 2011.
- **78**. Finkelstein A, Taubman S. Health care policy. Randomize evaluations to improve health care delivery. *Science*. 2015;347(6223):720-722. doi:10. 1126/science.aaa2362
- **79**. Cao J, Zhang X, Shahinian V, et al. Generalizability of an acute kidney injury prediction model across health systems. *Nat Mach Intell*. 2022; 4(12):1121-1129. doi:10.1038/s42256-022-00563-8
- **80**. Angus DC. Do sepsis alerts help? *JAMA*. 2025; 333(9):759-760. doi:10.1001/jama.2024.25818
- **81.** Wong A, Cao J, Lyons PG, et al. Quantification of sepsis model alerts in 24 us hospitals before and during the COVID-19 pandemic. *JAMA Netw Open*. 2021;4(11):e2135286-e2135286. doi:10.1001/jamanetworkopen.2021.35286
- **82**. Li RC, Asch SM, Shah NH. Developing a delivery science for artificial intelligence in healthcare. *NPJ Digit Med*. 2020;3(1):107. doi:10.1038/s41746-020-00318-v
- **83**. Shah NH, Milstein A, Bagley SC. Making machine learning models clinically useful. *JAMA*. 2019;322(14):1351-1352. doi:10.1001/jama.2019.
- **84.** Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. *Lancet Digit Health*. 2021;3(11):e745-e750. doi:10.1016/S2589-7500(21)00208-9
- **85**. He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus Al cardiac function assessment. *Nature*. 2023;616(7957):520-524. doi:10.1038/s41586-023-05947-3
- **86**. Perez MV, Mahaffey KW, Hedlin H, et al; Apple Heart Study Investigators. Large-scale assessment of a smartwatch to identify atrial fibrillation. *N Engl J Med*. 2019;381(20):1909-1917. doi:10.1056/NEJMoa1901183
- **87**. Han R, Acosta JN, Shakeri Z, Ioannidis JPA, Topol EJ, Rajpurkar P. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. *Lancet Digit Health*. 2024;6(5): e367-e373. doi:10.1016/S2589-7500(24)00047-5
- **88**. Topol EJ. Welcoming new guidelines for AI clinical research. *Nat Med*. 2020;26(9):1318-1320. doi:10.1038/s41591-020-1042-x
- **89**. Martindale APL, Llewellyn CD, de Visser RO, et al. Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines. *Nat Commun*. 2024;15(1):1619. doi:10.1038/s41467-024-45355-3

- **90**. Angus DC. Randomized clinical trials of artificial intelligence. *JAMA*. 2020;323(11):1043-1045. doi:10.1001/jama.2020.1039
- **91.** Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How medical Al devices are evaluated: limitations and recommendations from an analysis of FDA approvals. *Nat Med.* 2021;27(4):582-584. doi:10.1038/s41591-021-01312-x
- **92.** Curran GM, Landes SJ, McBain SA, et al. Reflections on 10 years of effectiveness-implementation hybrid studies. *Front Health Serv.* 2022:2:1053496. doi:10.3389/frhs.2022.1053496
- **93.** Angus DC, Alexander BM, Berry S, et al; Adaptive Platform Trials Coalition. Adaptive platform trials: definition, design, conduct and reporting considerations. *Nat Rev Drug Discov*. 2019;18(10):797-807. doi:10.1038/s41573-019-0034-3
- **94.** Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. *JAMA*. 2015;313(16):1619-1620. doi:10.1001/jama.2015.2316
- **95**. Park JW, Liu MC, Yee D, et al; I-SPY 2 Investigators. Adaptive randomization of neratinib in early breast cancer. *N Engl J Med*. 2016;375(1):11-22. doi:10.1056/NEJMoa1513750
- **96.** Huang DT, McVerry BJ, Horvat C, et al; UPMC REMAP-COVID Group, on behalf of the REMAP-CAP Investigators. Implementation of the randomized embedded multifactorial adaptive platform for COVID-19 (REMAP-COVID) trial in a US health system: lessons learned and recommendations. *Trials*. 2021;22(1):100. doi:10.1186/s13063-020-04997-6
- **97.** McCreary EK, Bariola JR, Minnier TE, et al. The comparative effectiveness of COVID-19 monoclonal antibodies: a learning health system randomized clinical trial. *Contemp Clin Trials*. 2022;119:106822. doi:10.1016/j.cct.2022.106822
- **98**. Huang DT, McCreary EK, Bariola JR, et al. The UPMC OPTIMISE-C19 (Optimizing Treatment and Impact of Monoclonal Antibodies Through Evaluation for COVID-19) trial: a structured summary of a study protocol for an open-label, pragmatic, comparative effectiveness platform trial with response-adaptive randomization. *Trials*. 2021; 22(1):363. doi:10.1186/s13063-021-05316-3
- **99.** Goldhaber NH, Jacobs MB, Laurent LC, et al. Integrating clinical research into electronic health record workflows to support a learning health system. *JAMIA Open.* 2024;7(2):00ae023. doi:10. 1093/jamiaopen/ooae023
- **100**. Horwitz LI, Kuznetsova M, Jones SA. Creating a learning health system through rapid-cycle, randomized testing. *N Engl J Med*. 2019;381(12): 1175-1179. doi:10.1056/NEJMsb1900856
- 101. Gallo A. A refresher on A/B testing. *Harvard Business Review*. June 28, 2017. Accessed January 21, 2024. https://hbr.org/2017/06/a-refresheron-ab-testing
- **102**. Sawant N, Namballa CB, Sadagopan N, Nassif H. Contextual multi-armed bandits for causal marketing. *arXiv*. Preprint posted October 2, 2018. doi:10.48550/arXiv.1810.01859
- **103**. Kohavi R, Thomke S. The surprising power of online experiments. *Harv Bus Rev*. 2017;95(5):74-82.
- **104.** Solomon J. A/B testing in the insurance industry: what top firms are doing. *Kameleoon*. Accessed June 29, 2025. https://www.kameleoon.

- com/blog/ab-testing-insurance-industry#:~:text=A/B
- **105.** Meyer MN, Heck PR, Holtzman GS, et al. Objecting to experiments that compare two unobjectionable policies or treatments. *Proc Natl Acad Sci U S A*. 2019;116(22):10723-10728. doi:10. 1073/pnas.1820701116
- **106**. Dahabreh IJ, Bibbins-Domingo K. Causal inference about the effects of interventions from observational studies in medical journals. *JAMA*. 2024;331(21):1845-1853. doi:10.1001/jama.2024.7741
- **107**. Muralidharan V, Adewale BA, Huang CJ, et al. A scoping review of reporting gaps in FDA-approved AI medical devices. *NPJ Digit Med*. 2024;7(1):273. doi:10.1038/s41746-024-01270-x
- 108. Azad-Khaneghah P, Neubauer N, Miguel Cruz A, Liu L. Mobile health app usability and quality rating scales: a systematic review. *Disabil Rehabil Assist Technol*. 2021;16(7):712-721. doi:10.1080/17483107.2019.1701103
- **109**. Pennington R. Artificial intelligence (AI) and its Opportunity in Healthcare Organizations Revenue Cycle Management. RCM; 2023.
- 110. Callahan A, McElfresh D, Banda JM, et al. Standing on FURM ground: a framework for evaluating fair, useful, and reliable Al models in health care systems. *NEJM Catalyst*. 2024;5(10): CAT.24.0131. doi:10.1056/CAT.24.0131
- 111. Longhurst CA, Singh K, Chopra A, Atreja A, Brownstein JS. A call for artificial intelligence implementation science centers to evaluate clinical effectiveness. *NEJM*. 2024;1(8):Alp2400223. doi:10.1056/Alp2400223
- **112.** Bedoya AD, Economou-Zavlanos NJ, Goldstein BA, et al. A framework for the oversight and local deployment of safe and high-quality prediction models. *J Am Med Inform Assoc*. 2022;29(9):1631-1636. doi:10.1093/jamia/ocac078
- 113. Reddy S, Rogers W, Makinen VP, et al. Evaluation framework to guide implementation of Al systems into healthcare settings. *BMJ Health Care Inform*. 2021;28(1):e100444. doi:10.1136/ bmjhci-2021-100444
- 114. Goldstein J, Weitzman D, Lemerond M, Jones A. Determinants for scalable adoption of autonomous Al in the detection of diabetic eye disease in diverse practice types: key best practices learned through collection of real-world data. *Front Digit Health*. 2023; 5:1004130. doi:10.3389/fdgth.2023.1004130
- **115.** Castro M, Bishop D, Weitzman D, Ramirez R. Enhancing diabetic eye disease detection through autonomous artificial intelligence implementation in a federally qualified health center. *Diabetes*. 2024;73(suppl 1). doi:10.2337/db24-57-OR
- **116.** Winter PD, Carusi A. (De)troubling transparency: artificial intelligence (AI) for clinical applications. *Med Humanit*. 2023;49(1):17-26. doi:10.1136/medhum-2021-012318
- 117. Adus S, Macklin J, Pinto A. Exploring patient perspectives on how they can and should be engaged in the development of artificial intelligence (Al) applications in health care. *BMC Health Serv Res.* 2023;23(1):1163. doi:10.1186/s12913-023-10098-2
- **118**. Edwards L. The EU AI Act: a summary of its significance and scope. *Artif Intell*. 2021;1:25.
- 119. European Parliament. EU Al Act: first regulation on artificial intelligence. Accessed June 29, 2025. https://www-europarl-europa-eu.pitt.

iama.com

- idm.oclc.org/topics/en/article/ 20230601ST093804/eu-ai-act-first-regulation-onartificial-intelligence
- **120.** US Food and Drug Administration. Artificial intelligence and machine learning in software as a medical device. Accessed June 27, 2025. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
- 121. US Dept of Health and Human Services. Health data, technology, and interoperability: certification program updates, algorithm transparency, and information sharing (HTI-1) final rule. Accessed June 27, 2025. https://www.federalregister.gov/documents/2024/01/09/2023-28857/health-data-technology-and-interoperability-certification-program-updates-algorithm-transparency-and
- **122.** Zhang DY, Venkat A, Khasawneh H, Sali R, Zhang V, Pei Z. Implementation of digital pathology and artificial intelligence in routine pathology practice. *Lab Invest*. 2024;104(9):102111. doi:10. 1016/j.labinv.2024.102111
- 123. Moundas C. CMS Finalizes New Electronic Prior Authorization Requirements For Payers And Providers. Mondaq Business Briefing. NA-NA; 2024.
- **124.** Khera R, Butte AJ, Berkwits M, et al. Al in medicine: JAMA's focus on clinical outcomes, patient-centered care, quality, and equity. *JAMA*. 2023;330(9):818-820. doi:10.1001/jama.2023.15481
- **125**. Eaneff S, Obermeyer Z, Butte AJ. The case for algorithmic stewardship for artificial intelligence and machine learning technologies. *JAMA*. 2020; 324(14):1397-1398. doi:10.1001/jama.2020.9371
- **126.** Jain SS, Mello MM, Shah NH. Avoiding financial toxicity for patients from clinicians' use of Al. *N Engl J Med.* 2024;391(13):1171-1173. doi:10. 1056/NEJMp2406135
- **127**. Youssef A, Pencina M, Thakur A, Zhu T, Clifton D, Shah NH. External validation of AI models in health should be replaced with recurring local validation. *Nat Med*. 2023;29(11):2686-2687. doi:10.1038/s41591-023-02540-z
- **128.** Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH. MINIMAR (minimum information for medical ai reporting): developing reporting standards for artificial intelligence in health care. *J Am Med Inform Assoc.* 2020;27(12):2011-2015. doi:10.1093/jamia/ocaa088
- **129.** You JG, Hernandez-Boussard T, Pfeffer MA, Landman A, Mishuris RG. Clinical trials informed framework for real world clinical implementation and deployment of artificial intelligence applications. *NPJ Digit Med.* 2025;8(1):107. doi:10. 1038/s41746-025-01506-4
- **130.** World Health Organization. *Ethics and Governance of Artificial Intelligence for Health*. World Health Organization; 2021.
- **131.** Labkoff S, Oladimeji B, Kannry J, et al. Toward a responsible future: recommendations for Al-enabled clinical decision support. *J Am Med Inform Assoc.* 2024;31(11):2730-2739. doi:10.1093/jamia/ocae209
- **132.** Li F, Ruijs N, Lu Y. Ethics & Al: a systematic review on ethical concerns and related strategies for designing with Al in healthcare. *Al.* 2022;4(1): 28-53. doi:10.3390/ai4010003
- **133**. Garba-Sani Z, Farinacci-Roberts C, Essien A, Yracheta JM. *ACCESS AI: A New Framework for*

- Advancing Health Equity in Health Care AI. Health Affairs Forefront: 2024.
- **134.** Dankwa-Mullan I, Scheufele EL, Matheny ME, et al. A proposed framework on integrating health equity and racial justice into the artificial intelligence development lifecycle. *J Health Care Poor Underserved*. 2021;32(2):300-317. doi:10.1353/hpu.2021.0065
- **135.** Shah NH, Halamka JD, Saria S, et al. A nationwide network of health Al assurance laboratories. *JAMA*. 2024;331(3):245-249. doi:10.1001/jama.2023.26930
- **136.** Embí PJ, Rhew DC, Peterson ED, Pencina MJ. Launching the trustworthy and responsible AI network (TRAIN): a consortium to facilitate safe and effective AI adoption. *JAMA*. 2025;333(17):1481-1482. doi:10.1001/jama.2025.1331
- **137**. Matheny M, Israni ST, Ahmed M, Whicher D. *Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril*. National Academy of Medicine; 2019:10. doi:10.17226/27111
- **138.** Health AI. Health AI partnership is a multi-stakeholder collaborative. Accessed June 29, 2025. https://healthaipartnership.org/about-ai-health-partnership
- **139.** Matheny ME, Goldsack JC, Saria S, et al. Artificial intelligence in health and health care: priorities for action. *Health Aff (Millwood)*. 2025;44 (2):163-170. doi:10.1377/hlthaff.2024.01003
- **140.** National Nurses United. National Nurses United survey finds A.I. technology degrades and undermines patient safety. Accessed June 29, 2025. https://www.nationalnursesunited.org/press/national-nurses-united-survey-finds-aitechnology-undermines-patient-safety
- 141. Ng MY, Kapur S, Blizinsky KD, Hernandez-Boussard T. The AI life cycle: a holistic approach to creating ethical AI for health decisions. *Nat Med*. 2022;28(11):2247-2249. doi:10.1038/ s41591-022-01993-y
- **142.** Sidebottom R, Lyburn I, Brady M, Vinnicombe S. Fair shares: building and benefiting from healthcare AI with mutually beneficial structures and development partnerships. *Br J Cancer*. 2021; 125(9):1181-1184. doi:10.1038/s41416-021-01454-2
- **143.** US Food and Drug Administration. Total product lifecycle considerations for generative AI enabled devices. Accessed June 29, 2025. https://www.fda.gov/media/182871/download
- **144.** Hernandez-Boussard T, Lee AY, Stoyanovich J, Biven L. Promoting transparency in Al for biomedical and behavioral research. *Nat Med*. 2025;31(6):1733-1734. doi:10.1038/s41591-025-03680-0
- **145.** Lu JH, Callahan A, Patel BS, et al. Assessment of adherence to reporting guidelines by commonly used clinical prediction models from a single vendor: a systematic review. *JAMA Netw Open*. 2022;5(8):e2227779. doi:10.1001/jamanetworkopen. 2022.7779
- **146.** Kwong JCC, Khondker A, Lajkosz K, et al. APPRAISE-Al tool for quantitative evaluation of Al studies for clinical decision support. *JAMA Netw Open.* 2023;6(9):e2335377. doi:10.1001/jamanetworkopen.2023.35377
- **147.** Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-Al and CONSORT-Al Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the

- CONSORT-AI extension. *Lancet Digit Health*. 2020; 2(10):e537-e548. doi:10.1016/S2589-7500(20) 30218-1
- **148.** Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. *BMJ.* 2022;377(5): 924-933. doi:10.1038/s41591-022-01772-9
- 149. Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. *Lancet Digit Health*. 2020;2(10): e549-e560. doi:10.1016/S2589-7500(20)30219-3
- **150.** Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. *BMJ*. 2024;385:e078378. doi:10.1136/bmj-2023-078378
- **151.** Mitchell M, Wu S, Zaldivar A, et al. Model cards for model reporting. presented at: Proceedings of the Conference on Fairness, Accountability, and Transparency; 2019; Atlanta, GA. doi:10.1145/3287560.3287596
- **152.** Stoyanovich J, Howe B. Nutritional labels for data and models. *Q Bull Comput Soc IEEE Tech Comm Data Eng.* 2019;42(3).
- **153.** Fox A. Epic leads new effort to democratize health AI validation. May 28, 2024. Accessed June 29, 2025. https://www.healthcareitnews.com/news/epic-leads-new-effort-democratize-health-ai-validation
- **154.** Embi PJ. Algorithmovigilance: advancing methods to analyze and monitor artificial intelligence-driven health care for effectiveness and equity. *JAMA Netw Open*. 2021;4(4):e214622-e214622. doi:10.1001/jamanetworkopen.2021.4622
- **155.** The Joint Commission. The Joint Commission and Coalition for Health AI join forces to scale the responsible use of AI in delivering better healthcare. June 11, 2025. Accessed June 29, 2025. https://www.jointcommission.org/resources/news-and-multimedia/news/2025/06/the-joint-commission-and-coalition-for-health-ai-join-forces/
- **156.** Fleisher LA, Economou-Zavlanos NJ. Artificial intelligence can be regulated using current patient safety procedures and infrastructure in hospitals. *JAMA Health Forum*. 2024;5(6):e241369-e241369. doi:10.1001/jamahealthforum.2024.1369
- **157**. Desai RJ, Matheny ME, Johnson K, et al. Broadening the reach of the FDA Sentinel system: a roadmap for integrating electronic health record data in a causal analysis framework. *NPJ Digit Med*. 2021;4(1):170. doi:10.1038/s41746-021-00542-0
- **158.** Mandl KD, Gottlieb D, Mandel JC. Integration of AI in healthcare requires an interoperable digital data ecosystem. *Nat Med.* 2024;30(3):631-634. doi:10.1038/s41591-023-02783-w
- **159.** Shah NH, Entwistle D, Pfeffer MA. Creation and adoption of large language models in medicine. *JAMA*. 2023;330(9):866-869. doi:10.1001/jama. 2023.14217
- **160**. Beavins E. CHAI embarks on post-deployment monitoring for AI as FDA oversight lags. Accessed July 15, 2025. https://www.fiercehealthcare.com/ai-and-machine-learning/chai-embarks-post-deployment-monitoring-ai
- **161**. Platt R, Brown JS, Robb M, et al. The FDA Sentinel Initiative—an evolving national resource.

E14 JAMA Published online October 13, 2025

- *N Engl J Med*. 2018;379(22):2091-2093. doi:10. 1056/NEJMp1809643
- **162.** Brown JS, Maro JC, Nguyen M, Ball R. Using and improving distributed data networks to generate actionable evidence: the case of real-world outcomes in the Food and Drug Administration's Sentinel system. *J Am Med Inform Assoc.* 2020;27(5):793-797. doi:10.1093/jamia/ocaa028
- **163.** El-Kareh R, Brenner DA, Longhurst CA. Developing a highly-reliable learning health system. *Learn Health Syst.* 2022;7(3):e10351. doi:10.1002/lrh2.10351
- **164.** McDonald PL, Foley TJ, Verheij R, et al. Data to knowledge to improvement: creating the learning health system. *BMJ*. 2024;384:e076175. doi:10. 1136/bmj-2023-076175
- **165.** Franklin JB, Marra C, Abebe KZ, et al; JAMA Summit on Clinical Trials Participants. Modernizing the data infrastructure for clinical research to meet evolving demands for evidence. *JAMA*. 2024;332 (16):1378-1385. doi:10.1001/jama.2024.0268
- **166.** Weeks WB, Spelhaug J, Weinstein JN, Ferres JML. Bridging the rural-urban divide: an implementation plan for leveraging technology and artificial intelligence to improve health and economic outcomes in rural America. *J Rural Health*. 2024;40(4):762-765. doi:10.1111/jrh.12836
- **167**. Abbasi AB, Layden J, Gordon W, et al. A unified approach to health data exchange: a report from the US DHHS. *JAMA*. 2025;333(12): 1074-1079. doi:10.1001/jama.2025.0068
- **168**. Collins FS, Schwetz TA, Tabak LA, Lander ES. ARPA-H: accelerating biomedical breakthroughs. *Science*. 2021;373(6551):165-167. doi:10.1126/science. abj8547
- **169.** ARPA. ARPA-H announces site selections by launching nationwide health innovation network. September, 2023. Accessed June 29, 2025. https://arpa-h.gov/news-and-events/arpa-h-launches-nationwide-health-innovation-network
- 170. ARPA. PRECISE-AI: performance and reliability evaluation for continuous modifications and useability of artificial intelligence. Accessed June 29, 2025. https://arpa-h.gov/explore-funding/programs/precise-ai
- 171. Mandl KD. Unseen commercial forces could undermine artificial intelligence decision support. NEJM. 2025;2(3):Alp2400922. doi:10.1056/ Alp2400922
- **172.** Halamka JD, Tripathi M. The HITECH era in retrospect. *N Engl J Med*. 2017;377(10):907-909. doi:10.1056/NEJMp1709851
- **173.** Car J, Topol EJ. Advocating for a master of digital health degree. *JAMA*. 2025;333(9):753-754. doi:10.1001/jama.2024.27365
- **174**. Petersson L, Larsson I, Nygren JM, et al. Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with

Downloaded from jamanetwork.com by University of Maryland, College Park, Joseph Richardson on 10/14/2025

- healthcare leaders in Sweden. BMC Health Serv Res. 2022;22(1):850. doi:10.1186/s12913-022-08215-8
- 175. Ötleş E, James CA, Lomis KD, Woolliscroft JO. Teaching artificial intelligence as a fundamental toolset of medicine. *Cell Rep Med*. 2022;3(12): 100824. doi:10.1016/j.xcrm.2022.100824
- **176.** Russell RG, Lovett Novak L, Patel M, et al. Competencies for the use of artificial intelligence-based tools by health care professionals. *Acad Med.* 2023;98(3):348-356. doi:10.1097/ACM.0000000000004963
- **177.** Triola MM, Rodman A. Integrating generative artificial intelligence into medical education: curriculum, policy, and governance strategies. *Acad Med.* 2024;10:1097.
- 178. Car J, Ong QC, Erlikh Fox T, et al; Digital Health Systems Collaborative. The digital health competencies in medical education framework: an international consensus statement based on a Delphi study. *JAMA Netw Open*. 2025;8(1): e2453131-e2453131. doi:10.1001/jamanetworkopen. 2024.53131
- **179.** Sinskey JL, Margolis RD, Vinson AE. The wicked problem of physician well-being. *Anesthesiol Clin.* 2022;40(2):213-223. doi:10.1016/j.anclin.2022.01.001
- **180.** Shachar C, Cadario R, Cohen IG, Morewedge CK. HIPAA is a misunderstood and inadequate tool for protecting medical data. *Nat Med*. 2023;29 (8):1900-1902. doi:10.1038/s41591-023-02355-y
- **181**. Liddell K, Simon DA, Lucassen A. Patient data ownership: who owns your health? *J Law Biosci*. 2021;8(2):lsab023. doi:10.1093/jlb/lsab023
- **182.** Mikk KA, Sleeper HA, Topol EJ. The pathway to patient data ownership and better health. *JAMA*. 2017;318(15):1433-1434. doi:10.1001/jama.2017.12145
- **183**. Assistant Secretary for Technology Policy. HIPAA versus state laws. Accessed June 29, 2025. https://www.healthit.gov/topic/hipaa-versus-state-laws
- **184.** Vest JR. Geography of community health information organization activity in the United States: implications for the effectiveness of health information exchange. *Health Care Manage Rev.* 2017;42(2):132-141. doi:10.1097/HMR. 000000000000000103
- **185.** Mandl KD, Perakslis ED. HIPAA and the leak of "deidentified" EHR data. *N Engl J Med*. 2021;384 (23):2171-2173. doi:10.1056/NEJMp2102616
- **186**. Cassel C, Bindman A. Risk, benefit, and fairness in a big data world. *JAMA*. 2019;322(2):105-106. doi:10.1001/jama.2019.9523
- **187**. European Parliament. What is GDPR, the EU's new data protection law? Accessed June 29, 2025. https://gdpr.eu/what-is-gdpr/
- **188**. Mello MM, Shah NH, Char DS. President Biden's executive order on artificial intelligence:

- implications for health care organizations. *JAMA*. 2024;331(1):17-18. doi:10.1001/jama.2023.25051
- **189.** Smith M, Sattler A, Hong G, Lin S. From code to bedside: implementing artificial intelligence using quality improvement methods. *J Gen Intern Med*. 2021;36(4):1061-1066. doi:10.1007/s11606-020-06394-w
- **190.** Feng J, Phillips RV, Malenica I, et al. Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. *NPJ Digit Med*. 2022;5(1):66. doi:10. 1038/s41746-022-00611-y
- **191.** Whicher D, Kass N, Saghai Y, Faden R, Tunis S, Pronovost P. The views of quality improvement professionals and comparative effectiveness researchers on ethics, IRBs, and oversight. *J Empir Res Hum Res Ethics*. 2015;10(2):132-144. doi:10.1177/1556264615571558
- 192. Faden RR, Kass NE, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. An ethics framework for a learning health care system: a departure from traditional research ethics and clinical ethics. *Hastings Cent Rep.* 2013; (Spec No): S16-S27. doi:10.1002/hast.134
- **193.** Kass NE, Faden RR, Angus DC, Morain SR. Making the ethical oversight of all clinical trials fit for purpose. *JAMA*. 2025;333(1):75-80. doi:10.1001/jama.2024.0269
- **194.** Kass NE, Faden RR. Ethics and learning health care: the essential roles of engagement, transparency, and accountability. *Learn Health Syst.* 2018;2(4):e10066. doi:10.1002/lrh2.10066
- **195.** Spector-Bagdady K, Jagsi R. Big data, ethics, and regulations: Implications for consent in the learning health system. *Med Phys.* 2018;45(10): e845-e847. doi:10.1002/mp.12707
- **196**. Lantos JD. The regulation of clinical research: what's love got to do with it? *Learn Health Syst*. 2017;2(1):e10048. doi:10.1002/lrh2.10048
- **197.** Johnson KB, Horn IB, Horvitz E. Pursuing equity with artificial intelligence in health care. *JAMA Health Forum*. 2025;6(1):e245031. doi:10.1001/jamahealthforum.2024.5031
- **198**. Price WN II, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. *JAMA*. 2019;322(18):1765-1766. doi:10.1001/jama. 201915064
- **199.** Mello MM, Guha N. Understanding liability risk from using health care artificial intelligence tools. *N Engl J Med.* 2024;390(3):271-278. doi:10.1056/NEJMhle2308901
- 200. Mello MM, Guha N. Understanding liability risk from using health care artificial intelligence tools. *N Engl J Med*. 2024;390(3):271-278. doi:10.1056/NEJMhle2308901

jama.com JAMA Published online October 13, 2025 E15